Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Interpenetrating supramolecular lattices in 4,4'-bipyridine-2,3,5,6-tetrahydroxy-1,4-benzoquinone (3/2)

John A. Cowan, ${ }^{\text {a* }}$ Judith A. K. Howard ${ }^{\text {b }}$ and Michael A. Leech ${ }^{\text {b }}$

${ }^{\text {a }}$ Institut Laue Langevin, BP 156, 38042 Grenoble CEDEX 9, France, and ${ }^{\text {b }}$ Department of Chemistry, University of Durham, Durham DH1 3LE, England
Correspondence e-mail: cowan@ill.fr

Received 24 May 2001
Accepted 10 July 2001
4,4'-Bipyridine (BPY) and 2,3,5,6-tetrahydroxy-1,4-benzoquinone (THBQ) crystallize in a $3: 2$ ratio as a neutral molecular adduct, $3 \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{6}$, in space group $P \overline{1}$. There are two independent and centrosymmetric THBQ molecules and two different BPY molecules in the asymmetric unit, one of which lies about an inversion centre. The molecules link together through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds to form three interpenetrating networks which create a 'superlattice' of three times the volume of the primitive cell.

Comment

To investigate a variety of molecular interactions in the solid state, in particular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, we have produced new cocrystals of 4,4-bipyridine (BPY) and tetrahydroxybenzoquinone (THBQ). Cocrystals of organic acids and bipyridines have been studied extensively and have been observed to form a wide variety of intermolecular hydrogen bonds (Reetz et al., 1994; MacLean et al., 1999; Lough et al., 2000). We have reported recently the structure of BPY with 2,5-dihydroxy-1,4-benzoquinone (Cowan et al., 2001), and as a natural progression of the series, we have investigated BPY with THBQ and present here the structure of 4,4'-bipyridine-2,3,5,6-tetrahydroxy-1,4-benzoquinone (3/2) (Fig. 1).

3BPY•2THBQ
There are two independent centrosymmetric THBQ molecules in the structure. One THBQ molecule shows a spiral arrangement of the hydroxy H atoms similar to that observed by Klug (1965), while the other adopts a 'crab-like' conformation, with the $\mathrm{O}-\mathrm{H}$ bonds almost parallel to the quinone
$\mathrm{C}=\mathrm{O}$ groups. The geometry of the non- H atoms in both THBQ molecules is not significantly different from that observed by Klug (1965).

There are also two independent BPY molecules in the structure, one of which lies across an inversion centre; the other is complete within the asymmetric unit. In the complete BPY molecule, the pyridine rings are twisted at 19.9 (1) ${ }^{\circ}$ with respect to each other, while the other BPY molecule is required to be planar by symmetry. The twist in the unique BPY molecule optimizes three weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds [C14‥O2 $2^{\mathrm{i}}, \mathrm{C} 16 \cdots \mathrm{O} 6$ and $\mathrm{C} 18 \cdots \mathrm{O} 4^{\mathrm{ii}}$; symmetry codes: (i) $x, y-1, z$; (ii) $x-1, y-1, z]$.

Figure 1
The molecules of the title adduct shown with 50% probability displacement ellipsoids. The dashed lines indicate hydrogen bonds. [Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $-1-x,-y,-z$; (iii) $2-x$, $2-y,-z$; (iv) $1-x,-y, 1-z$.]

There are four conventional hydrogen bonds in the asymmetric unit. Each of the four hydroxy groups is a donor and each of the pyridine N atoms is an acceptor. The other acceptor is O 5 which acts both as a donor and as an acceptor. The carbonyl groups could be regarded as acceptors for intramolecular hydrogen bonds, but the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles are unacceptable $\left(\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1=108^{\circ}, \mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1=105^{\circ}\right.$ and $\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 4=106^{\circ}$), as is the case for a possible intramolecular hydrogen bond between H 5 and $\mathrm{O} 6(\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 6=$ 102°).

Three different hydrogen-bonded chains are formed in the crystal; two arise from $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and the third from $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2). Chains of THBQ molecules propagate along the [111] direction, connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (O2 $\cdots \mathrm{O} 5$). Chains of BPY and THBQ molecules propagate along the [210] direction connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (O6 • N3), and further $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bonded chains of BPY and THBQ molecules are formed along the [13 $\overline{1}]$ direction $\left[\mathrm{O} 3 \cdots \mathrm{~N} 1^{\mathrm{iii}}\right.$ and $\mathrm{O} 5 \cdots \mathrm{~N} 2$; symmetry code: (iii) $x+1$, $y+2, z]$.

When these three non-collinear chains intersect with one another, two-dimensional rings are created which connect together to form a three-dimensional supramolecular lattice. In the lattice, the THBQ molecules act as four-connecting (molecule containing C 1) and six-connecting (molecule containing C4) nodes and the BPY molecules act only as links. The [111] and [13 $\overline{1}$] chains link together into planar sheets incorporating both types of node. The [210] chains connect the sheets via the six-connecting nodes after spanning two intervening planes.

The supramolecular structure can also be described by a supercell with axes of $a^{\prime}=16.798 \AA$ [210] , $b^{\prime}=17.096 \AA$ [120],

Figure 2
View of the molecular packing showing the formation of hydrogenbonded chains, which link together to form a three-dimensional lattice. The dashed lines indicate hydrogen bonds and the parallelograms highlight the chains linked into rings. H atoms have been omitted for clarity.
$c^{\prime}=13.547 \AA$ [111], $\alpha^{\prime}=108.8^{\circ}, \beta^{\prime}=117.8^{\circ}$ and $\gamma^{\prime}=51.8^{\circ}$, and a volume of $2709 \AA^{3}$, three times that of the primitive unit cell.

The three separate 'lattices' which create an interpenetrating mesh within the supercell are shown in Fig. 3. Examination of the structure with PLATON (Spek, 1990) showed that there are no cavities of significant size within this structure. A similar structural motif occurs in cocrystals of a 3:2 ratio of BPY and trimesic acid (Sharma \& Zaworotko, 1996), in which three two-dimensional interpenetrating hydrogen-bonded grids are formed, but unlike the present structure, large voids are formed in the crystal.

Figure 3
Packing diagram viewed close to the [111] direction. The primitive unit cell and the supercell based on [111], [210] and [120] have been indicated. The separate interpenetrating lattices are coloured differently. H atoms and some molecules have been omitted for clarity.

Experimental

4,4'-Bipyridine ($156 \mathrm{mg}, 1 \mathrm{mmol}$) and 2,3,5,6-tetrahydroxy-1,4-benzoquinone dihydrate ($156 \mathrm{mg}, 1 \mathrm{mmol}$) were dissolved in methanol and water producing a deep-red solution. Crystals suitable for X-ray structure determination were obtained by slow evaporation of the solvent at room temperature.

Crystal data

$3 \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{6}$	$Z=1$
$M_{r}=812.74$	$D_{x}=1.492 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.8856(8) \AA$	Cell parameters from 910
$b=9.0728(9) \AA$	reflections
$c=12.9288(11) \AA$	$\theta=9.3-22.1^{\circ}$
$\alpha=109.164(5)^{\circ}$	$\mu=0.11 \mathrm{~mm}^{-1}$
$\beta=92.476(5)^{\circ}$	$T=100(2) \mathrm{K}$
$\gamma=111.074(5)^{\circ}$	Irregular, brown
$V=903.17(14) \AA^{\circ}$	$0.6 \times 0.4 \times 0.3 \mathrm{~mm}$

Data collection

Bruker SMART CCD	4127 independent reflections
\quad diffractometer	2628 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.037$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-10 \rightarrow 11$
$T_{\min }=0.754, T_{\max }=1.000$	$k=-11 \rightarrow 11$
9859 measured reflections	$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038
$$

$w R\left(F^{2}\right)=0.067$

$S=1.07$

4127 reflections 319 parameters

> Only coordinates of H atoms refined
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.02 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.27 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}$	0.84 (2)	1.91 (2)	2.692 (2)	153 (2)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\text {i }}$	0.97 (2)	1.74 (2)	2.651 (2)	155 (1)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{~N} 2$	0.88 (2)	1.79 (2)	2.635 (2)	161 (1)
O6-H6 \cdots N3	0.94 (2)	1.82 (2)	2.707 (2)	157 (1)
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2^{\text {ii }}$	0.96 (2)	2.36 (2)	3.268 (2)	158 (1)
C16-H16 . ${ }^{\text {O6 }}$	0.96 (1)	2.40 (1)	3.066 (2)	126 (1)
C18-H18 $\cdots{ }^{\text {a }}{ }^{\text {iii }}$	0.97 (1)	2.34 (2)	3.274 (2)	162 (1)

Symmetry codes: (i) $1+x, 2+y, z$; (ii) $x, y-1, z$; (iii) $x-1, y-1, z$.

All H atoms were found in the difference Fourier maps and were refined with isotropic displacement parameters fixed to their parent atoms; the $\mathrm{C}-\mathrm{H}[0.95$ (2)-1.04 (1) \AA] and $\mathrm{O}-\mathrm{H}$ distances all refined to within standard ranges.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1161). Services for accessing these data are described at the back of the journal.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cowan, J. A., Howard, J. A. K. \& Leech, M. A. (2001). Acta Cryst. C57, 302303.

Klug, H. P. (1965). Acta Cryst. 19, 983-992.
Lough, A. J., Wheatley, P. S., Ferguson, G. \& Glidewell, C. (2000). Acta Cryst. B56, 261-272.
MacLean, E. J., Wheatley, P. S., Ferguson, G. \& Glidewell, C. (1999). Acta Cryst. C55, 1892-1896.
Reetz, M. T., Höger, S. \& Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181-183.
Sharma, C. V. K. \& Zaworotko, M. J. (1996). Chem. Commun. pp. 2655-2656.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

